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I. INTRODUCTION    

 

  Let L  be a lattice with 0.  We recall ([1],[2]) that an element La  is  pseudocomplemented if there is a 

largest member of L  which is disjoint with .a  If such an element exists, it is denoted by 
*a  and is called  

pseudocomplement of a  (that is, 0}=:{=* xaLxmaxa  ). 

  A  pseudocomplemented lattice is a lattice with 0  in which every element has a pseudocomplement. Clearly, 

a pseudocomplemented lattice is bounded, where .0=1 *
 

If ,0,1),,( L  is a bounded lattice, we recall ([1],[3],[7],[21]) that an element La  is called  

complemented if there is an element Lb  such that 0=ba  and 1;=ba  if such an element exists it is 

called a  complement of .a  Complements are, in general, not unique, unless the lattice is distributive (see 

Lemma 2.6.2, [3]). In residuated lattices ([21]) the complements are unique, although the underlying lattice need 

not be distributive ([9]). 

  A  boolean element of a residuated lattice L  is a  complemented element of the underlying lattice of L . It is 

proved in [21] that for a boolean element Le , its complement is 0=* ee . In the same paper is proved 

that the set of boolean elements of L  form a subalgebra of ,L  that is a boolean algebra denoted by ),(LB  and 

that Le  belongs to )(LB  if, and only if, 1.=*ee  These results are also presented in [3], [7] and [24]. 

For a residuated lattice ,L  the boolean subalgebra )(LB  is called the  boolean center of .L  

  In some situations (see [1],[2]) L  is supposed to be distributive. 

  A pseudocomplemented lattice L  is called  Stonean lattice if 1=*** xx   for every .Lx  

In [1] is given the following theorem of characterization for Stonean distributive lattices:  

Theorem 1  For a pseudocomplemented distributive lattice L  with 0,  the following are equivalent: 

)(i  L  is a Stonean lattice; 

)(ii  
*** =)( yxyx   for every ;, Lyx   

)(iii  
****** =)( yxyx   for every ;, Lyx   

)(iv  Every prime ideal in L  contains at most one minimal prime ideal; 

)(v  If I  and J  are distinct minimal prime ideals in ,L  then .= LJI    

 

  The study of pseudocomplemented distributive lattices commenced with a paper by V. Glivenko in 1929 (see 

[15]). Although in the 1937 classic paper of M. H. Stone ([25]) there is a reference to what we now call Stone 

algebras, there were G. Grätzer and E. T. Schmidt ([16]) who first solved a problem of M. H. Stone and thereby 

generated widespread interest in the topic. G. Birkhoff [[2], 1948 edition], in fact, was the first paper in which the 

term  Stonean lattice is used. 

  We recall that a  residuated lattice ([14],[28]) is an algebra ,0,1),,,,( L  of type ,0)(2,2,2,2,0  

equipped with an order   such that 
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:1LR  ,0,1),,( L  is a bounded lattice relative to  ; 

:2LR  ,1),( L  is a commutative ordered monoid; 

:3LR    and   form an adjoint pair, i.e., bxa   iff ,bax   for all .,, Lxba   

  For examples of residuated lattices see [6],[7],[13],[14],[19],[24],[26]. 

  In what follows (unless otherwise specified) by L  we denote a residuated lattice. 

For Lx  we define 0=* xx  and .)(= **** xx  

  Taking as a guide line the case of lattices with 0,  the residuated lattice L  is called  Stonean 

([11],[12],[20],[27]) if 1=*** xx   for every .Lx  

  We recall ([19],[24]) that in general residuated lattices need not be distributive. 

  Every Stonean residuated lattice ([8]) L  is pseudocomplemented, where for ,Lx  
*x  is the 

pseudocomplement of .x  

  In the absence of distributivity of ,L  it is possible that Theorem 1 be not true in the case of .L  Indeed, in [8] 

we put in evidence some properties of i-ideals in a Stonean residuated lattice ,L  in connection with properties 

)(ii  and )(iv  (for the dual form)  from Theorem 1. 

  Residuated lattices and Stone algebras are two topics much studied in lattice theory, with impact on logic. One 

of the topics studied in residuated lattices is the theory of the so-called implicative ideals and filters. This paper 

deals with algebras that are both residuated lattices and Stone algebras, the subject-matter is the detection of 

properties of some special types of implicative filters (i-filters for short) that are specific to Stonean residuated 

lattices. We mention that we introduce the notions of i-filter’s radical and boolean i-filter in Stonean ressiduated 

lattices. Several interesting results are obtained. 

 

II. PRELIMINARIES   

For Lx  and 1n  we define 0,=* xx  ,)(= **** xx  1=0x  and xxx nn 1=  for 1.n   

 

Proposition 1  Let L  be a residuated lattice. Then for every ,,, Lzyx   we have: 

 

 (c1) ;so,, yxyxyxyx   

 

 (c2) ;and1,= yxyyxyx   

 

 (c3) ;then,If zyzxyx   

 

 (c4) ;and, zxzyyxyzxzyx   

 

 (c5) );(=)(  so,)(=)( zxyzyxzyxzyx   

 

 (c6) );()()( and),()(=)( zxyxzyxzxyxzyx   

 

         (c7) 
);()(=)(

,)()()(  and,)(=)()(

zxyxzyx

zyxzyzxzyxzyzx




     

 

 (c8) );()()( zxyxzyx   

  

         (c9) ;==and,=)(,=)( ***************** yxxyyxyxyxyxyx 

  

 (c10) .=and,,1,=00,=10,= *********** xxxyyxxxxx   

 

Consider the following identities:  
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 ),()(= tydivisibiliyxxyx   (11) 

 

 ),(1=)()( linearityprexyyx   (12) 

 

 ).(= eidempotencyxyx   (13) 

  

Definition 1  A  residuated lattice L  is called:   

    )(i   Divisible if L  verifies (11),  

    )(ii   MTL-algebra if L  verifies (12),  

    )(iii   BL-algebra if L  verifies (11) and (12),  

    )(iv   G-algebra if L  is a BL-algebra and verifies (13).  

  

We present some examples of residuated lattices that we will use in the sequel, for illustrating various properties 

and various classes of residuated lattices. 

 

Example 1.  Let ,1},,{0,= cbaL  with 1,<<,<0 cba  but a  and b  are incomparable.  

 

      1 

c 

     a  b 

      0 

 

Then ,0,1),,,,( L  is a residuated lattice ([19], page 187), where   and   are defined as in the 

tables: 

101

0

00

00

000000

10

101

110

111

111

111110

10

cba

ccbac

bbbb

aaaa

cba

cba

bac

aab

bba

cba 

 

Example 2.  ,1},,,,,,{0,= gfedcbaL  with 1,<<<<0 eba  1,<<<<0 eda  

1,<<<<0 gda  1,<<<<0 edc  1,<<<<0 gdc  1<<<<0 gfc  and elements },,{ ca  

},,{ db  },,{ fd  },{ ge  and },{ fb  are pairwise incomparable. 

 

 

 

 

 

 

 

 

 



Some properties of filters in Stonean residuated lattices 

International organization of Scientific Research                        47 | P a g e  

 

 

      1 

     e   g 

    b  d  f 

     a  c 

      0 

 Then  ([19], page 166) L  becomes a residuated lattice relative to the following operations:  

 

101

00

000

00

0000

000000

000

000000

0000000000

10

101

11

111

11

1111

111111

111

111111

1111111110

10

gfedcba

gffdccag

fffcccf

edcbabae

dccaad

cccc

bababab

aaaa

gfedcba

gfedcba

geedbbag

eeebbbf

gfgfedce

ggeedd

eeec

gfgfgfb

ggga

gfedcba 

 

Example 3.  ,1},,,,,,{0,= gfedcbaL  with 1,<<<<0 eba  1,<<<<0 eda  

1,<<<<0 gda  1,<<<<0 edc  1,<<<<0 gdc  1<<<<0 gfc  and elements },,{ ca  

},,{ db  },,{ fd  },{ ge  and },{ fb  are pairwise incomparable (see the diagram from Example 2). 

  

 Then  ([23]) L  becomes a residuated lattice relative to the following operations:  

 

101

0

000

0

0

000

000

000

0000000000

10

101

110

111

110

11110

111111

111

111111

1111111110

10

gfedcba

ggfddcaag

fffcccf

edcedcbae

ddcddcaad

ccccccc

bababab

aaaaaaa

gfedcba

gfedcba

feecbbg

eeebbbf

gfgfbae

ffbbd

bbbc

gfgfgfb

fffa

gfedcba 

Example 4  Let ,1},,,,{0,= dcnbaL  with 1,<<<<0 dna  1,<<<<0 cnb  but ),( ba  and 

),( dc  are pairwise incomparable. 
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1 

     c  d 

      n 

     a  b 

      0 

Then  ([19], page 191) L  becomes a distributive residuated lattice relative to the operations:  

 

 

101

0

0

0

00

00

00000000

10

101

110

110

11110

11111

11111

11111110

10

dcnba

ddnnbad

cncnbac

nnnnban

bbbbbb

aaaaaa

dcnba

dcnba

ccbad

ddbac

ban

aab

bba

dcnba 

 

2. 1.  i-Filters in residuated lattices  

 

We say that an ordered set L is a lattice if for every two elements Lba , there exist ba and ba in 

 .L  

In lattice theory a lattice filter is defined as follows:  

Definition 2  A non-empty subset F will be called a lattice filter ( filter, for short) of L  if 

)( 1F  If ba   and ,Fa  then ;Fb  

)( 2F  If ,, Fba   then .Fba   

We denote by )(LF  the set of all filters of .L   

 

In residuated lattice theory we have the following notions:  

Definition 3  An  implicative filter ( i-filter, for short) is a nonempty subset F of L such that 

)( 1F  If yx   and ,Fx  then ;Fy  

)( 3F  If ,, Fyx   then .Fyx   

We denote by )(LiF  the  set of all i-filters of .L   

Remark 1  1.  F  is an  implicative filter of L  iff F1  and ,, Fyxx   then Fy  (that  is, F  

is a  deductive system of L ). 

2.  Every i-filter is a filter in the lattice ),,,( L  but the converse is not true (see [8],[20]).  

So, if we denote by ))(()( LL iFF  the set of all lattice filters (i-filters) of ,L  then ).()( LLi FF   

Remark 2  There are residuated lattices in which  lattice  filters are not  i-filters. 

Indeed,  we consider the Example 2. Clearly, ,1},,{= gedF  is a lattice filter. 

If F  is an i-filter, since 0,=dd   and an i-filter is closed with respect to the operation ,  then we deduce 

that ,0 F  a contradiction, so, F  is not an  i-filter.  

 

 We have  ([6]), )(=)( LLi FF  iff yxyx  =  for every ., Lyx   

For a nonempty subset S  of L  we denote by S  the i-filter generated by .S  If ,La  the i-filter 

generated by }{a  will be denoted by a  (also, a  is called  principal). If )(LF iF  and ,\ FLa  
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then  }{aF  will be denoted by .aF  

 

Proposition 2 ([6],[7],[24]) Let L  be a residuated lattice, LS   a nonempty subset, )(LF iF  and 

.\ FLa  

Then: 

)(i  };,...,somefor ,...:{= 11 SssxssLxS nn   

)(ii  1}; somefor ,:{=  nxaLxa n
 

)(iii  ;1}somefor ,:{=  nFxaLxaF n
 

)(iv  ;=  baFbFaF  

)(v  PaLP i  )),(everyfor ( F  iff Pa   iff ,Pan   for any 1.n   

 

Proposition 3 ([22]) Let L  be a residuated lattice and ., Lba   Then: 

)(i  ba   implies ; ab  

)(ii  ;==  bababa  

)(iii  .=  baba   

 

Proposition 4 ([6],[7],[24]) For )(LP iF  the following are equivalent: 

)(i  If 21= FFP   with ),(, 21 LFF iF  then 1= FP  or ;= 2FP  

)(ii  If PFF  21  with ),(, 21 LFF iF  then PF 1  or ;2 PF   

)(iii  If Lyx ,  and ,Pyx   then Px  or .Py   

 

Definition 4  We say that )(LP iF  is  prime i-filter if LP   and P  verifies one of the equivalent 

conditions of  Proposition 4. We denote by )(LSpeci  the set of all prime i-filters of .L   

 

Remark 3  We notice that following Proposition 4, )(i  in order to prove that an i-filter )(LP iF  is not 

prime it suffices that: 

 If there exist Lyx ,  such that Pyx   with Px  and ,Py  then P  is not prime.  

 

  We recall that an i-filter M  of L  is called  maximal if LM   and M  is not strictly contained in a 

proper i-filter of .L  We denote by )(LMaxi  the set of all maximal i-filters of .L   

Remark 4  In any residuated lattice ,L maximal i-filters are prime. 

Indeed, following Proposition 4, we deduce that every maximal i-filter M  of a residuated lattice L  is prime  

because, if there exist two proper i-filters )(, LPN iF  such that ,= PNM   then NM   and 

,PM   by the maximality of M  we deduce that ,== PNM  that is, M is an inf-irreducible, so prime 

element in the lattice of  i-filters )),(( LiF  of L  (by the distributivity of the lattice of  i-filters )),(( LiF  

of L ).  

 

In literature for maximal i-filters in any residuated lattice we have the following characterizations: 

 

Corollary 1 ([4],[7]) For a residuated lattice ,0,1),,,,( L  and M  a proper i-filter of L  we have the 

following equivalent assertions:   

    )(i  );(LMaxM i   

    )(ii  For any Mx  there exist 1,  nMd  such that 0;=nxd    

    )(iii  For any MxLx  ,  iff ,)( * Mxn   for some 1;n   
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    )(iv  For any Mx  there is 1n  such that ,Myxn   for every .Ly   

   

Remark 5 ([7]) If M  is a maximal i-filter of a residuated lattice ,L  then Mx  iff .** Mx    

 

Definition 5  The intersection of the maximal i-filters of a residuated lattice L  is called the radical of L  and 

will be denoted by )(LRad .  

  

Proposition 5 ([13]) 

0}.=])[( such  that1 is  there1everyfor  :{=)( * n
kn

n xknLxLRad    

 

3. 1.  i-Filter’s radical in Stonean residuated lattices   

 

Following the papers [8], we may define an additive operation   on any residuated lattice L  by setting for all 

,, Lyx   

 .)(= *** yxyx   (14) 

 

Clearly, following (c5) for all ,, Lyx   the equation  (14)  is equivalent with  

 .== ****** xyyxyx     (15) 

 

In what follows we will establish the properties of operation   in any residuated lattice.  

Proposition 6 ([8]) In any residuated lattice ,L  the operation  (14) has the following properties:   

    )(i  0,0=0   ;= xyyx    

    )(ii  ;==)( ****** yxyxyx    

    )(iii  ;=0=0 **xxx    

    )(iv  ;)(=)( zyxzyx    

    )(v  1;=0=1=1 *xx    

    )(vi  1;=1= yxyx    

    )(vii  );()(=)( *** zxyxzyx    

    )(viii  );()(=)( *** zxyxzyx    

    )(ix  1;== ** xxxx    

    )(x  xxyyyx  **** )(=)(  is equivalent with 

,)(=)( **************** xxyyyx   for all .,, Lzyx   

 Proof. ).(i  .=)(=)(=0,=1=)0(0=00 ***
)

2
(

******* xyxyyxyx
Lr

  

).(ii  .=])()[(==)(=)(=)( **************
10)(

******* yxyxyxyxyxyx
C

  

).(iii  .=)0(=0 **
10)(

*** xxx
C

  

).(iv  By (15), (c9), (c5) and point )(ii , we have 

****
5)(

****
(15)

*
)(

***
15)(

******
(15)

)(=)(=)(=)(=)(=)( yzxyzxyzxyzxyzxzyx
Cii



 and 

,)(=)(=)(=)(=)(=)( ****
(15)

****
(15)

*
)(

***
(15)

******
(15)),(

yzxyxzyxzyxzyxzzyx
iii



 hence our claim holds. 

).(v  1.=1=1=1
2)(

*
10)(

***
(15) CC

xxx   
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).(vi  Since 
**** , yyxx   and yxyx **** ,  implies .yxyx   Thus,  

1.==1 yxyxyx   

).(vii  By (c7), (c10) and (c9), we obtain successively 

).()(=)()(

=)()(=)(=)(=)(=)(

**
(15)

********

9)(
****

7)(
***

9)(
**

10)(
****

(15)
*

zxyxxzxy

zxyxzyxzyxzyxzyx
CCCC





 

).(viii We obtain successively 

).()(

=)()(=)(=)(=)(=)(
15)(

******
7)(

*****
9)(

****
10)(

******
(15)

***

zxyx

zxyxzyxzyxzyxzyx
CCC




 

).(ix  1.===
2)(

****
(15)

*
)(

*
Ci

xxxxxx   

 

).(x
********

(15)
*****

(15)
** )(=)(=)( yyxyyxyyx    

and .)(=)(=)( ********
(15)

*****
(15)

** xxyxxyxxy   Thus, our claim holds.  

 

For Lx  and 0,n  we define 0=0 x  and .1)(= xxnnx   

 

Corollary 2  If Lyx ,  and 1,, nm  then 

)(i  If ,nm   then ;nxmx   

)(ii  If ,yx   then ;mymx    

Proof. ).(i  Since ,2==
(15)

***
2)(

**
(10)

xxxxxxxx
C

  we deduce that ,2xx   that is, if ,nm    

then ,nxmx   for any natural numbers 1., nm  

).(ii  Since yx   we obtain successively ,*
4)(

* xy
C

  ,**
3)(

** xxyy
C

  

 ,)()( ***
4)(

*** yyxx
C

  .
(14)

yyxx   Hence .22 yx    

By induction, we deduce that ,mymx   for every natural number 1.m   

  

Lemma 1  Let L  be a residuated lattice and .,, Lzyx   

Then: 

)( 11c  If ,yx   then .zyzx    

  

Proof. ).( 11c  If yx   we obtain successively ,** xy   .****** zyzx   Hence .zyzx    

 

Corollary 3 ([8]) Let L  be a Stonean residuated lattice.  If Lyx ,  and 2,n  then 

)( 12c  ).()( yxnnyx    

  

Proof. Mathematical induction relative to .n   

 

Corollary 4 ([8]) Let L  be a Stonean residuated lattice. If Lyx ,  and 2m  or 2,n  then 

)( 13c  ).)(()()( yxmnnymx    

  

Proof. Suppose 2.m  If 0=n  in )( 13c  we have equality. If 1,=n  )( 13c  follows from ).( 12c  
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If 2,n  by )( 12c  we deduce that =)]([])[()()( yxmnymxnnymx   ).)(( yxmn   

Analogously, if 2.n   

 

Corollary 5 ([8]) Let L  be a Stonean residuated lattice. If Lyx ,  and nm,  are natural numbers, then 

)( 14c  );)(()()( yxmnnymx   

)( 15c  ).)(()()( yxmnnymx    

Proof. ).( 14c  If 0,=m  then  in )( 14c  we have equality for every natural  number .n  

If 1=m  and 0,1,=n  we have also equality in ).( 14c  If 1=m  and 2,n  then we have  

)
12

(

)()(
c

nyxnyx   ).( yxn   

If 2,m  then 

)
13

(

)()()()(
c

nymxnymx   ).)(( yxmn   

).( 5c  As in the case of ),( 14c  using ).( 13c   

 

  Following the paper [30] we extend the notion of  filter’s radical to residuated lattices, as i-filter’s radical. 

Initially, the  filter’s radicals were defined and studied in lattice implication algebras (see [30]), we extend this 

notion to residuated lattices as  i-filter’s radicals and we present some specific properties of them in Stonean 

residuated lattices.  

 

Definition 6  Let )(LD iF  be an i-filter of .L  The subset  

 }such thatis there:{ DnxNnLx   

is called an  i-filter’s radical, and it is denoted by .D   

 

 In [30], the authors define a lattice implication algebra as follows:  

Definition 7 ([30]) By a  lattice implication algebra we mean a bounded  lattice ,0,1),,( L  with 

order-reversing involution 1 and 0  the greatest and the smallest element of L  respectively, and a binary  

operation   satisfying the follow axioms: 

)( 1I  );(=)( zxyzyx   

)( 2I  1;=xx  

)( 3I  ;= ** xyyx   

)( 4I  If 1,== xyyx   then ;= yx  

)( 5I  ;)(=)( xxyyyx   

)( 1L  );()(=)( zyzxzyx   

)( 2L  )()(=)( zyzxzyx   

for all .,, Lzyx    

 

Corollary 6  There are  Stonean residuated lattices which are not  lattice implication algebras, so, it is proper  

to study i-filter’s radicals in Stonean residuated lattices.  

  

Proof. In Example 3 we have 1,=00 ***   1,=11 ***   1,==*** bfaa   1,==*** bfbb    

1,==*** fbcc   1,=10=***  dd  1,=10=***  ee  1,==*** fbff    

1,=10=***  gg  that is, L  is Stonean. 

We consider the Stonean residuated lattice from Example 3, where 1==)( ffffa   and  

,==)( gabaaf   so, ,)(=1=)( aafgffa   that is, the axiom )( 5I   

from Definition 7 is not satisfied.  
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Remark 6  In a residuated lattice ,L  an  i-filter’s radical is not always an  i-filter. 

Indeed, see Example 2, for {1}=D  we have }.,,{1,= dgeD  

By Remark 2, we deduce that D  is not an i-filter.  

 

Following Remark 6, we deduce that an i-filter’s radical is not closed with respect to the operation .e  

 

Remark 7  The residuated lattice from Example 2 is not Stonean. 

Indeed, the Example 2 is not Stonean, because 1.=***  ddd   

 

Proposition 7  Let )(LD iF  be an i-filter of a residuated lattice .L  Then .DD    

  

Proof . Let )(LD iF  be an i-filter of L  and .Dx  Since D  is an i-filter and ,, xxxDx   we  

deduce that ,2= Dxxx   that is, .Dx   

 

Lemma 2  Let )(LD iF  be an i-filter of a residuated lattice .L  Then:   

    )(i  ;1 D   

    )(ii  If Dx  and ,yx   then ;Dy   

    )(iii  If ,, Dyx   then .Dyx    

  

Proof. ).(i  Since for every i-filter )(LD iF  we have ,1 D  and 1,=1n  for every 1,n  we deduce  

that .1 D  

).(ii  If ,Dx  then there exists 1n  such that .Dnx  Because ,yx   by Corollary 2, )(ii  we  

have ,nynx   since D  is an i-filter and ,, nynxDnx   then ,Dny  that is, .Dy  

).(iii  If ,, Dyx   then there exist 1, nm  such that Dmx  and .Dny  Since  

),(,
2)(

yxmmxDmx
C

  we deduce that ,)( Dyxm   that is, .Dyx    

Following Lemma 2 we conclude that:  

Theorem 2  In any residuated lattice ,L  the i-filter’s radicals are lattice filters closed with respect to the 

operation .   

 Since in any residuated lattice ,L  the i-filter’s radicals are lattice filters, then they are closed with respect to the 

operation .  In the case of Stonean residuated lattices we establish that:  

Lemma 3  Let )(LD iF  be an i-filter of a Stonean residuated lattice .L  Then Dyx ,  if,  and only if, 

.Dyx    

Proof. Let ).(LD iF  Assume that Dx  and ,Dy  then there exist 1, nm  such that Dmx   

and .Dny  Without restricting the generality we can assume that .nm  By Corollary 2, )(i  we have  

.nxmx  Since )(LD iF  is an i-filter of L  and ,Dmx  then .Dnx  

 

By (7), we have .=)()(=)(
2)(7)(

nynxnynxnxnxnynxnx
CC

  Since ,Dnynx   we 

deduce that .)( Dnynxnx   Since D  is an i-filter and ,)(, DnynxnxDnx   then  

.Dnynx   Following Corollary 4, )( 7c  we have ,))(( 2 Dyxnnynx   then we deduce that  

.Dyx   

Conversely, if ,Dyx   then there exists 1n  such that .)( Dyxn   By Corollary 2, )(ii  we have  
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,,)( nynxyxn   and  since D  is an  i-filter, then Dnx  and ,Dny  that  is, ., Dyx    

 

Following Lemma 3 we conclude that an i-filter’s radical in a Stonean residuated lattice is closed relative to the 

operation .  

 

Theorem 3  Let )(, LQP iF  be two i-filters of a residuated lattice .L  Then   

    )(i  If ,QP   then ;QP    

    )(ii  ;= QPQP    

    )(iii  . PP   

  

Proof. ).(i  We notice that for all Px  there exists 1n  such that .QPnx   Therefore, ,Qx  

that  is, .QP   

).(ii  Clearly, QP  is an i-filter of .L  Since PQP   and ,QQP   by )(i  we have 

.QPQP   

Conversely, for any QPx   we have Px  and ,Qx  so, there exist 1, nm  such that 

Pmx  and .Qnx  Clearly, by Corollary 2, )(i  we deduce that .)( QPxnm   Therefore, 

.QPx   

).(iii  Following Proposition 7 we have ,PP   by ),(i  we deduce that . PP   

 

Following the properties of a  principal i-filter from Proposition 3 we obtain: 

 

Corollary 7  Let L  be a residuated lattice. Then   

    )(i  If ,ba   then ; ab   

    )(ii  ;=  baba   

    )(iii  If 1,=ba  then .{1}= ba   

  

Proof. ).(i  and ).(ii  are obvious. 

).(iii  By ),(ii  we deduce that .{1}= ba  

 

Lemma 4  Let P  be a prime i-filter of a residuated lattice .L  If P  is an i-filter of L , then not always 

P  is prime.  

  

Proof. We consider the Example 1, where {1}=P  is a prime i-filter and its i-filter’s radical is }.{1,= cP  

Clearly, ,1},{,1},{ cac  and ,1},{ cb  are i-filters of .L  

Following Proposition 4, since ,1},{,1},{=}{1,= cbcacP   with ,1},{}{1, cac   and 

,1},,{}{1, cbc   we deduce that P  is not a prime i-filter. 

As a second proof, we can follow the Remark 3, since Pcba  =  with Pa  and ,Pb  then 

P  is not a prime i-filter.  

 We say that a residuated lattice has the  double negation property if for all Lx  hold .=** xx   

Remark 8  Let P  be a prime i-filter of a G-algebra L  with double negation property. If P  is an i-filter of 
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L , then P  is prime. 

Indeed, it is well known that in a BL-algebra L  we have the following rule of calculus: .=)( *** yxyx   

Since 

yxyxyxyxyxyxyxyxyx
C

 ==)(=)(=])()[(=)()(=)2( *******
9)(

**
(13)

***
(14)

 and ,===2 ** xxxxx   we deduce that ,=)( nynxyxn   for any 1.n  

In order to prove that P  is prime, we consider Lyx ,  such that Pyx   and .Px  Then there 

exists 1n  such that .)( Pyxn   Since P  is prime and Pnynxyxn  =)(  and ,Pnx  we 

deduce that ,Pny  that is, .Py  So, P  is prime.  

 

Proposition 8 ([8]) If L  is a Stonean residuated lattice then for every :, Lyx   

)( 16c  .=)( *** yxyx   

 

Lemma 5  Let L  a Stonean residuated lattice. If )(LMaxM i  is a maximal i-filter of ,L  then 

.= MM   

Proof. By maximality of ,M  it is sufficient to prove that )(LM iF  is an i-filter of .L  

For that, we consider ., Myx   Then there exist 1, nm  such that Mmx  and 

.)()( MnymxMny   Following )( 14c  we deduce that ,))(( Myxmn   that is, 

.Myx   Thus, ).(LM iF   

 The following results (Theorem 4, Theorem 5) represent new characterizations for maximal i-filters in Stonean 

residuated lattices. 

 

Theorem 4  Let L  be a Stonean residuated lattice and .La  Then the following assertions are equivalent: 

)(i  );(LMaxM i  

)(ii  ),(LSpecM i  Mx  iff .** Mx    

 

Proof. ).()( iii   Clear by Remarks 4 and 5. 

).()( iii   Let .Mx  Then .** Mx   Since L  is a Stonean residuated lattice we have 1.=*** xx   

Since )(LSpecM i  and ,1=*** Mxx   ,** Mx   then .* Mx   

If .* Mx   Since ,xxn   for every 1,n  then .)( *
4)(

* n
C

xx   Since M  is an i-filter we deduce that 

.)( * Mxn   

If for any ,Lx  ,)( * Mxn   for some 1,n  then .Mx  If by contrary ,Mx  then ,Mxn   for 

every 1,n  and ,0=)( * Mxx nn   a contradiction. 

We deduce that for any ,Lx  Mx  iff ,)( * Mxn   for some 1,n  that is, )(LMaxM i  (see 

Corollary 1, )(ii ).  

 

Theorem 5  Let )(LSpecM i  be a proper i-filter of a Stonean residuated lattice .L  Then MM =  if, 

and only if, ).(LMaxM i   

Proof. Following Lemma 5, we deduce that if ),(LMaxM i then .= MM  

Conversely, if ,= MM  then )(LFM i  is an i-filter of .L  Thus, by (c10), if ,Mx then  

.** Mx   If ,** Mx  then there is 1n  such that  
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,)(2)(2)(
(14)

***
2)(

** MxnMxnMxxnMnx
C

  that is, .Mx  

Therefore, Mx  iff ,** Mx   following Theorem 4 we deduce that ).(LMaxM i  Thus,  

 

).(LMaxM i   

Lemma 6 Let L  be a non-degenerate residuated lattice. If ,= MM  then ).(LMaxM i   

Proof.  See the proof )"("  of  Theorem 5.  

 We propose to solve the following exercise.  

Remark 9  On a given Stonean residuated lattice ,L  show that: If ),(LMaxM i  then .= MM  

Indeed,  if we choose the Example 3. For any natural number 1n  we have  

.=,=,=1,=1,=,=1,=1,=1 bnabnbfncndnefnfngn  Clearly, ,1},,,,{= gedbaa  and  

,1},,,,{= gefdcc  are the maximal  i-filter of .L  It is easy to see that  aa =  and .=  cc   

 

Remark 10  In a Stonean residuated lattice ,L  if )(LMaxM i  is a maximal  i-filter of ,L  then not 

always .= MM  

Indeed, for that we consider the Example 3. Clearly, ,1},{= ebb  is an i-filter of L  and b   

,1},,,,{= gedba  a=  is a maximal  i-filter of .L  Thus, )(LMaxb i  and . bb  

 

Definition 8  Let 1L  and 2L  be two residuated lattices and 21: LLf   be a mapping from 1L  to .2L  

We call f  a  morphism of residuated lattices if for all 1, Lyx   it satisfies: 

)( 1M  0=(0)f  and 1;=(1)f  

)( 2M  );()(=)( yfxfyxf   

)( 3M  );()(=)( yfxfyxf   

)( 4M  );()(=)( yfxfyxf   

)( 5M  );()(=)( yfxfyxf   

)( 6M  .))((=)( ** xfxf   

 

Lemma 7  Let 1L  and 2L  be two residuated lattices. If 21: LLf   is a morphism of residuated lattices, 

then ),(=)( xnfnxf  for all 1Lx  and every natural number 1.n   

Proof. Since f  is a morphism of residuated lattices, then 

)
4

(),
6

(
***

(14)

=))((=)(
MM

xxfxxf    

*** ))(( xxf   

)
6

(
*** =))()((=

M

xfxf   ),()(=))()((
(14)

*** xfxfxfxf   by the associativity of 

  (see Proposition 6, )(iv ), we deduce that ),(=)( nxfxnf  for all 1Lx  and every natural number 

1.n   

 

Let f  be a morphism of residuated lattices from 1L  to 2L  and 
2

1L  be the greatest element of .2L  We 

define the dual kernel of f  denoted by ),( fkerD   as  

 }.1=)(:{:=)(
2

1 LxfLxfkerD   

Theorem 6  Let 21: LLf   be an onto morphism of residuated lattices. If )( 1LD iF  is a proper i-filter of 

,1L  and ,)( DfkerD   then .)(=)( DfDf   
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Proof.  Clearly, )()( 2LDf iF  is a proper i-filter of .2L  

Firstly, we prove that .)()( DfDf   

For that we consider ),( Dfy  then there exists Dx  such that .=)( yxf  Since ,Dx  then 

there is 1n  such that .Dnx  Following Lemma 7 we have ),(=)(=)( Dfnyxnfnxf   that is, 

.)(Dfy  

Conversely, we consider ,)(Dfy  then there is 1n  such that ).(Dfny  Since D  is morphism of 

residuated lattices, then there exists 1Lx  such that .=)( yxf  Following Lemma 7 we have 

,=)(=)( nyxnfnxf  and by the fact that f  is onto, we deduce that there exists Dz  such that 

).(=)( zfnxf  It follows that ,1=)()(=)(
2

21 Lnxfzfnxzf   that is, ).(1 fkerDnxz   

Because ,)( 1 DnxDnxzDfkerD   that is, .Dx  Therefore,  

).()(= Dfxfy    

 

In what follows we present an easy but important consequence of Theorem 6: 

 

Corollary 8 Let 21: LLf   be an onto morphism of residuated lattices. Then: 

)(i  If )( 1LD iF  and ,)( DfkerD   then );()( 2LDf iF  

)(ii  If )( 1LSpecD i  and ,)( DfkerD   then ).()( 2LSpecDf i   

 

In what follows we present an easy but important consequence of Theorem 5 and Theorem 6: 

 

Corollary 9 Let 21: LLf   be an onto morphism of Stonean residuated lattices. If )( 1LMaxD i  and 

,)( DfkerD   then ).()( 2LMaxDf i   

  

Proof. Obvious, by Theorem 4.  

  

Theorem 7  Let 21: LLf   be a morphism of residuated lattices. If )( 1LD iF  is a proper i-filter of ,1L  

then .)(=)( 11 DfDf 
  

  

Proof. Clearly, if ),( 22 LD iF  then ).()( 12

1 LDf iF
 

Firstly, we prove that .)()( 11 DfDf    

For that we consider ),(1 Dfx   then .)( Dxf   Then there exists 1n  such that  

.)(=)(
7

Dnxfxnf
Lemma

  So, ),(1 Dfnx   that is, .)(1 Dfx   

Conversely, we consider .)(1 Dfx   Then there is 1n  such that ),(1 Dfnx   then 

7

=)(
Lemma

nxf   

,)( Dxnf   that is, .)( Dxf   Hence ).(1 Dfx   So, ).()( 11 DfDf     

 

III. BOOLEAN I-FILTERS IN STONEAN RESIDUATED LATTICES   

 
An important goal in the residuated lattice theory is to investigate under which conditions every prime 

i-filter )(LSpecP i  is contained in a unique maximal i-filter. 

This fact is true for BL-algebras as we can see in what follows. Also, we prove that it is true for Stonean residuated 

lattice, but it is not true in any residuated lattice. 
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Corollary 10 There are residuated lattices in which prime i-filters are not contained in a unique maximal i-filter.  

  

Proof. We consider Example 4, where ,1}{= cc  is prime i-filter which is contained in the maximal i-filters 

,1},,,{= dcnaa  and ,1}.,,,{= dcnbb   

 

Proposition 9 ([26],Prop. 25,page 19) Let P  be a prime i-filter of a BL-algebra .L  If D  is a proper i-filter 

such that ,DP   then also D  is prime.  

 

Theorem 8 ([26],Th. 3,page 19) In a non-degenerate BL-algebra ,L  any proper i-filter can be extended to a 

maximal, prime i-filter.  

 

 And our goals follow:  

Theorem 9 In a non-degenerate BL-algebra ,L  any proper prime i-filter )(LSpecP i  can be extended to 

an unique maximal, prime i-filter.  

  

Proof. Following Theorem 8 we deduce that P  can be extended to a maximal, prime i-filter .M  It remains to  

prove the uniqueness. 

Supposing by contrary, there are )(, 21 LMaxMM i  two maximal i-filters of L  such that 1MP   and  

,2MP   then .21 MMP   Since the intersection of two i-filters is an i-filter, if we consider  

,= 21 MMD   then .DP  Following Proposition 9 we deduce that D  is a prime i-filter. Following  

Proposition 4, )(i  we deduce that 1= MD  or ,= 2MD  then 1MP   or ,2MP   a contradiction.  

 

Theorem 10 ([8]) If L  is a Stonean residuated lattice then every prime i-filter is contained in an unique maximal 

i-filter.  

Proof. Let P  be a prime i-filter and suppose by contrary that there are two distinct maximal i-filters 1M  and  

2M  such that 1MP   and .2MP   Since ,21 MM   there is 1Mx  such that .2Mx  Following  

Corollary 1, )(iii , there is 1n  such that .)( 2

* Mxn   Then ,)( 2

** Mxn   hence .)( ** Pxn   Since  

,1Mx  then ,1Mxn   hence 1

*)( Mxn   and .)( * Pxn   Since L  is supposed Stonean residuated  

lattice, ,1=)()( *** Pxx nn   hence Pxn *)(  or ,)( ** Pxn   a contradiction.  

 

Corollary 11  Let L  be a Stonean residuated lattice, then 0=*xx  for all Lx   

 

Proof. If ,Lx  then 1,=*** xx   hence ),(* LBx   so 0.=*** xx   Then 0,=**** xxxx   

hence 0.=*xx   

 

Proposition 10  For a residuated lattice ,L  the following conditions are equivalent: 

)(i  
**2 =)( xx  for every ;Lx  

)(ii  0=*xx  for every .Lx   

  

Proof. ).()( iii   Let Lx  and Lt  such that ., *xtxt   Then we obtain successively  

0,=*2 xxt   0,=2t  1,=0=)( **2t  1,=*t  0.=**t  Since ,**
10)(

tt
C

  then 0.=t   

Hence 0.=*xx  

).()( iii   Let .Lx  We obtain successively 0,=)( ** xxxxx   0,=)( *xxx    

,** xxx   ,= ** xxx   then .=)( **2 xx   
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   If a residuated lattice L  satisfies one of the equivalent conditions from Proposition 10, then it is called a  

SRL-algebra. In ([8]), the following result was proved for Stonean residuated lattices, but it is avaible, also, for 

SRL-algebras. It is known ([8]) that the class of Stonean residuated lattices is a subclass of SRL-algebras. 

Lemma 8  In a SRL-algebra L , the following are equivalent: 

)(i  {0} is a prime lattice ideal; 

)(ii  0=*x  for every 0;x  

)(iii  {0}\L  is a maximal i-filter.  

 

Definition 9  A nonempty subset F  of L  is called  Boolean i-filter if F  is an i-filter of L  and 

,* Fxx   for every .Lx   

 

Lemma 9  In a Stonean residuated lattice L , if there is a Boolean i-filter F  of L  then ).(LRadF    

  

Proof. Clearly, the radical of any residuated lattice is an i-filter, because it is the intersection of all maximal 

i-filters. 

Following Proposition 5, for any residuated lattice L  we have that  

is there,1everyfor :{=)(  nLxLRad  such that1nk  0}.=])[( * n
knx  

Following Proposition 10, )(i  we deduce that for any Stonean residuated lattice L  we have ,=)( ** xxn
 for 

every 1.n  Thus, 1is there:{=)(  nkLxLRad  such that 0}.=)( * n
k

x  

Let .Lx  Since L  is a SRL-algebra we have 

9)(
** =)(

C

xx   0,=*** xx   that is, ),()( * LRadxx   

for every .Lx  Since F  is supposed a Boolean i-filter, that is, ,* Fxx   for every ,Lx  then we 

deduce that ).(LRadF    

 

Theorem 11 (Boolean i-filter theorem) 

In a Stonean residuated lattice L , if there is a prime Boolean  i-filter F  of L ,  then ).(LMaxF i   

Proof.  Following Lemma 9, we deduce that ).(LRadF   

Let ),(LRadx  then 0,=)( * nx  for some 1,n  that is, 
*x  is of finite order, even more there is no  

i-filter to contain .*x  Since F  is supposed to be a Boolean i-filter,  then for every ,Lx  .* Fxx   

Even more, since ,* Fx   Fxx  *
 and F  is supposed to be prime, then ,Fx  that is,  

.)( FLRad    

Hence .=)( FLRad  

Because F  is prime, then )(LRad  is prime. Let )()( 1 LMaxM iii   be a sequence of maximal i-filters of 

.L  Since FLRadM ii =)(=1  and applying successively the Proposition 4, )(i  we deduce that 

1= MF  or 2= MF  or ... or ...,= iMF  that is, F  must to be a maximal  i-filter.  

 

Corollary 12 In a Stonean residuated lattice L , if {0}\L  is a maximal i-filter , then it is a Boolean i-filter.  

Proof. Following Lemma 8, )(ii  we deduce that for any Lx  we have {0},\=0=* Lxxxx    

hence {0},\* Lxx   that  is, {0}\L  is a Boolean  i-filter.  
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